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Algorithmic scalability in globally constrained conservative parallel discrete event
simulations of asynchronous systems
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We consider parallel simulations for asynchronous systems employingL processing elements that are ar-
ranged on a ring. Processors communicate only among the nearest neighbors and advance their local simulated
time only if it is guaranteed that this does not violate causality. In simulations with no constraints, in the infinite
L limit the utilization scales@Kornisset al., Phys. Rev. Lett.84, 1351~2000!#; but, the width of the virtual time
horizon diverges~i.e., the measurement phase of the algorithm does not scale!. In this work, we introduce a
moving D-window global constraint, which modifies the algorithm so that the measurement phase scales as
well. We present results of systematic studies in which the system size~i.e., L and the volume load per
processor! as well as the constraint are varied. TheD constraint eliminates the extreme fluctuations in the
virtual time horizon, provides a bound on its width, and controls the average progress rate. The width of theD
window can serve as a tuning parameter that, for a given volume load per processor, could be adjusted to
optimize the utilization, so as to maximize the efficiency. This result may find numerous applications in
modeling the evolution of general spatially extended short-range interacting systems with asynchronous dy-
namics, including dynamic Monte Carlo studies.

DOI: 10.1103/PhysRevE.67.046703 PACS number~s!: 02.70.2c, 05.40.2a, 68.35.Ct
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I. INTRODUCTION

Parallel discrete event simulations~PDES! of asynchro-
nous systems is a computer science term that stands for
allel simulations of complex systems with asynchronous
namics. Such spatially extended complex interacting syst
appear across a wide range of fields in natural sciences,
their examples include interacting spin systems in mate
physics, activated processes in chemistry, contact proce
in stochastic epidemic models, stochastic market model
finance, scheduling call arrivals in communication networ
and routing problems in internet traffic, to mention just a fe
applications of PDES. Despite active research in this a
@1,2# very few of the PDES techniques have filtered throu
to the physics community. Even the simplest random-
update Monte Carlo schemes@3#, where updates correspon
to Poisson-random discrete events, were long believed t
inherently serial~at least in the physics community!. Simu-
lation studies of parallel computations for asynchronous
tributed systems date back more than two decades ago@4,5#.
However, it was Lubachevsky’s work@6,7# on parallel simu-
lations of dynamic Ising spin systems which shed a new li
on this old problem and showed how to efficiently perfo
conservative simulations on a parallel computer. The des
of efficient algorithms that would allow modeling of asy
chronous systems in a parallel processing environmen
even more important nowadays, when parallel architectu
have become generally available. The architectures of to
may consist of several thousands of processing elements
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the size of future systems may be of the order of hund
thousands@8#. Such architectures pose new questions of
gorithm efficiency and scalability in large scale massive
parallel processing. We address these questions for cons
tive PDES, using the tools of modern statistical physics,
particular, those of nonequilibrium surface growth@9#.

The difficulties of parallelizing spatially extended asy
chronous cellular automata arise because in asynchro
systems the discrete events are not synchronized by a g
clock. For example, in the basic dynamic Ising model
ferromagnets discrete spins with two states each are pla
on a lattice. The discrete events are attempted spin fl
where the spin-flip probability at some site depends on
energy states of the neighboring sites. The lattice can
partitioned into a number of sublattices, and each sublat
may be assigned to a different processor. Processing
ments~PE! attempt a number of randomly chosen spin flip
and communicate with each other in some update attemp~a
discrete event!. Each PE carries its own local virtual tim
which is advanced by every update attempt. The local virt
time on a PE is the simulated time at the spins on its sub
tice. In the conservative PDES implementation it is ensu
that causality is not violated before each PE makes an up
attempt. Alternatively, in an optimistic PDES implement
tion, PEs make updates without communicating with t
neighbors, thus sometimes causing causality errors. The
timistic scheme provides a recovery mechanism by undo
the effects of all events that have been precessed pre
turely. Optimistic PDES have been an object of theoreti
and simulation studies@10–14#. The development of spa
tiotemporal correlations and self-organized criticality ha
been recently studied in the optimistic simulations of t
dynamics of Ising spin systems@15,16#. The conservative
©2003 The American Physical Society03-1



ti

o-
th
e

m
re
e

x-

th

e
p
th
-
s

til
th
a

o
g
tim
pe
te
ce
E
g

e
t

se

y

o
e
s
-

th

f t

tio
in
-
th
t
E
th
h
m
n
r
in
gi
m

on
the
and
ale

eme
n
ng
g
me

ss
ser-
ms

ion
on
his
takes
not
per-

are
ep-
pin
be

e is
r-
the
on
re is
n,
o

it

ro-

ent

ive
-
ed
e
te

ith

en
he

KOLAKOWSKA, NOVOTNY, AND KORNISS PHYSICAL REVIEW E67, 046703 ~2003!
scheme has been used recently to model magnetiza
switching @17#, ballistic particle deposition@18#, and a dy-
namic phase transition in highly anisotropic thin-film ferr
magnets@19,20#. These recent applications suggest that
conservative scheme should be particularly efficient wh
applied to large systems with short-range interactions.

Early efficiency studies of the conservative sche
@21,22# do not identify the mechanism which would ensu
the scalability of the PDES for an arbitrary system size. R
cently, Kornisset al. @23# introduced an approach that e
ploits an analogy between the virtual time horizon and
fluctuating surface that grows in a deposition process. In
picture, the fraction of nonidling PEs~the utilization! exactly
corresponds to the density of local minima in a virtual tim
surface. They showed that, in the case of one spin site
PE, the steady-state virtual time surface is governed by
Edwards-Wilkinson Hamiltonian, implying that the utiliza
tion does not vanish for an infinitely large system of PE
Ignoring communication delays and assuming that the u
zation is equivalent to the efficiency, they concluded that
computation phase of short-ranged conservative PDES is
ymptotically scalable. In general, the utilization should n
be taken as a sole measure of efficiency in the modelin
asynchronous systems. The same analysis of a virtual
surface@23–26# demonstrated that, in the case of one site
PE, the virtual time horizon infinitely roughens in the infini
PE limit. The statistical spread of the virtual time surfa
severely limits an averaging or measurement phase of PD
and divergence leads to severe difficulties with data mana
ment. Therefore, while the simulation phase~as determined
by the utilization studies! is asymptotically scalable, th
measurement phase is not. To ensure the efficiency of
algorithm, solutions need to be sought in which both pha
of the computation are scalable.

In studies of asynchronous updates in large parallel s
tems, Greenberget al. @27#, proposed aK-random connec-
tion model, where at each time step each PE randomly c
nects with K other PEs in the system. The virtual tim
horizon for this model is short-range correlated and ha
finite width in the infinite PE limit. Encouraged by this re
sult, we considered the two alternative modifications to
conservative scheme: a random connection model@28# and
the moving window constraint@24#. The purpose of these
modifications is to ensure that the measurement phase o
conservative PDES is scalable.

This paper presents the results of systematic simula
studies of conservative asynchronous PDES with the mov
window constraint~i.e., simulation studies of the simula
tions!. In Sec. II, we define terminology and we outline bo
the basic conservative update scheme and the constrain
date rule that we use in modeling of asynchronous PD
The scheme that we consider is such that the evolution of
time horizon is decoupled from the underlying systems. T
only one assumption that we make about underlying co
plex systems is that they are characterized by short-ra
interactions. Therefore, our analysis is generally valid fo
wide spectrum of physics applications. Section III conta
the analysis of scalability issues, which is based on analo
between PDES and kinetic roughening in nonequilibriu
04670
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surface growth. In the PDES analysis the focus is placed
two major issues: the scaling of the simulation phase and
scaling of the measurement phase. In Sec. IV, we present
analyze numerical data that were obtained in large sc
simulations of an asynchronous conservative PDES sch
with a moving window constraint. In our time evolutio
studies, we simultaneously varied the width of the movi
window and the system size~i.e., the number of processin
elements in the system as well as the number of volu
elements per processing element! in search for regularities
that would allow general conclusions. In Sec. V, we discu
connections between the scalability of a constrained con
vative scheme and the design of highly efficient algorith
for asynchronous systems.

II. CONSERVATIVE PDES FOR SPATIALLY
DECOMPOSABLE CELLULAR AUTOMATA

We consider an ideal system consisting ofL identical PEs,
arranged on a ring. Each PE hasNV lattice sites~or operation
volumes! and the algorithm randomly picks one of theNV
sites. If the site that is picked is an end site communicat
with a neighboring PE is required, while no communicati
between PEs is required if an interior site is picked. For t
system a discrete event means an update attempt that
place instantaneously. The state of the system does
change between update attempts. Processing elements
form operations concurrently, however, update attempts
not synchronized by a global clock. Such a system can r
resent, for example, concurrent operations of random s
flipping in a large spatially extended ensemble that can
arranged on a regular lattice. In this picture, the ensembl
spatially decomposed intoL subsystems, each of which ca
ries NV sites. Each subsystem is carried by one PE and
required communication is the exchange of informati
about states of the border spins. In the simplest case the
one site per PE,NV51, the system is a closed spin chai
and a spin-flip attempt at thekth PE depends on the tw
nearest-neighbor spins located on the (k21)th and the (k
11)th PEs. Thekth PE may not perform an update until
receives information from these neighboring PEs.

In this conservative PDES scheme, to simulate asynch
nous dynamics employingL processors, eachkth PE gener-
ates its own local simulated timetk for the next update at-
tempt. Update attempts are simulated as independ
Poisson-random processes, in which thekth local time incre-
ment ~i.e., the random time interval between two success
attempts! is exponentially distributed with unit mean. A pro
cessor is allowed to update its local time if it is guarante
not to violate causality. Otherwise, it remains idle. The tim
step t is the index of the simultaneously performed upda
attempt. It corresponds to an integer wall-clock time w
each processor attempting an update at each value oft.

The simplest choice for a communication rule betwe
processors, which is faithful to the original dynamics of t
underlying system, is a short-range connection model~Fig.
1!, where, at any time step (t11), thekth PE is allowed to
update if its local simulated timetk(t) is not greater than the
local simulated times of its two nearest neighbors,
3-2
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ALGORITHMIC SCALABILITY IN GLOBALLY . . . PHYSICAL REVIEW E 67, 046703 ~2003!
tk~ t !<min$tk21~ t !,tk11~ t !%. ~1!

The periodicity condition requires communication betwe
the first and the last PEs. In effect, this update rule introdu
a nearest-neighbor interaction and corresponding correlat
between PEs, which is analogous with nonequilibrium s
face growth. It was shown@23# that in the case ofNV51 the
evolution of the virtual time horizon on coarse-grain leng
scales is governed by the Kardar-Parisi-Zhang~KPZ! equa-
tion @29#:

] tt5]xxt2l~]xt!21h~x,t !, ~2!

wherex is a spatial variable in a continuum limit, the co
stant l is related to the coarse-graining procedure, a
h(x,t) accounts for random fluctuations.

In PDES with a moving window constraint, the comm
nication pattern between processing elements remains
short-range connection type but the new update rule requ
that additionally at each (t11) step the local simulated tim
of the kth processor fits within a window of widthD that is
defined relative to the slowest PE~i.e., the one with the
smallestt) at time t. Explicitly, the kth PE is allowed the
update iftk(t) simultaneously satisfies the short-range co
nection condition~1! and the following window condition:

tk~ t !<D1min$tk~ t !:k51, . . . ,L%. ~3!

In the computer science community the minimum in Eq.~3!
is called the global virtual time@10–13#. From this definition
it follows that the short-range connection model can
viewed as a particular case of the original update sche
when the width of the window is set to infinity, in which cas
condition~3! is trivially satisfied for all times. Thus, an infi
nite window is equivalent to the absence of the constrain

In typical simulations, when the number of volume e
mentsNV is larger than the minimumNV51, a causality
condition ~1! is enforced only for the border volumes o
each PE. If, at anyt step, a randomly chosen volume eleme
happens to be from the interior, i.e., when all of its imme
ate neighbors reside on one PE, then the PE always exe
the update and its local time is incremented for the conse
tive update attempt:tk(t11)5tk(t)1hk(t), where hk is
the kth random time increment that is exponentially distr
uted, randomly chosen independently on each PE and at
parallel stept. In the constrained simulations, condition~3! is
enforced for any randomly chosen volume element.

In the conservative update scheme a causality requirem
is the main mechanism that generates correlations am
processing elements. In the absence of a causality req
ment local simulated times would be incremented indep
dently of each other in the fashion of random deposit
~RD! @9#. However, even with this RD update rule, imposin

FIG. 1. Short-range connections in PDES for a linear chain.
04670
n
s

ns
r-

d

he
es

-

e
e

-

t
-
tes
u-

ch

nt
ng
re-
-

n

the windowing condition~3! alone will give rise to correla-
tions among processors. Note that the RD update rule d
not belong to a class of conservative update schemes, i.
cannot faithfully simulate the underlying system dynami
For D-constrained RD simulations, the speed with which t
correlations spread among all PEs is determined by the w
of the D window.

For a set ofL processing elements, a simulated time h
rizon ~STH! is defined as a set ofL local simulated times a
a time stept. To study the roughening of the STH surface, w
monitor the surface widtĥw(t)&, which is defined in stan-
dard fashion@9# via the variance of the STH,

^w2~ t !&5K 1

L (
k51

L

@tk~ t !2 t̄~ t !#2L , ~4!

where the angular bracket denotes an ensemble average
t̄ denotes the mean virtual time,t̄(t)5(1/L)(k51

L tk(t). Al-
ternatively, the surface width can also be defined as the
solute standard deviation̂wa(t)& from the mean virtual local
time,

^wa~ t !&5K 1

L (
k51

L

utk~ t !2 t̄~ t !u L . ~5!

We use both definitions~4! and~5! in our analysis. To study
the efficiency of an update process in the system ofL pro-
cessors, we define the utilization̂uL(t)& as a fraction of
processors that performed an update at parallel time stet.
Throughout the paper, we consistently use the following
tation: the surface widtĥw(t)& is an ensemble average o
w(t)5Aw2(t) computed att, while ^w& denotes the corre
sponding steady-state value att→`. The subscript ‘‘a’’ de-
notes the width computed in accordance to Eq.~5!, while
subscripts ‘‘L ’’ or ‘‘ NV’’ ~e.g.,^wL,NV

&) indicate the param-
eter dependence of the width computed in accordance to
~4!.

III. SCALABILITY MODELING

There are two important aspects of scalability, whi
should be dealt with in studies of algorithm efficiency. Bo
of them regard the time in the system and connect with d
management issues. The first is the question of whethe
not the utilization reaches a constant nonzero value in
limit of large system size~when L and NV may arbitrarily
vary!. In particular, one needs to know if the ‘‘worst cas
scenario’’ of one volume element per PE can produce a n
zero utilization in the infiniteL limit. A zero value of utili-
zation in the infinite system size limit would suggest that
algorithm would likely be useless for computationally inte
sive tasks on future generations of massively parallel co
puters, i.e., on systems that contain hundreds of thousand
processing elements@8#. The second question is the behavi
of the evolution of the STH, whether or not the statistic
spread of the STH saturates in time or scales with the sys
size. A negative answer to the latter question would sugg
that an algorithm would probably prove impractical in actu
3-3
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KOLAKOWSKA, NOVOTNY, AND KORNISS PHYSICAL REVIEW E67, 046703 ~2003!
applications, because the divergence of the STH width
plies that, for most computationally intensive jobs, the d
collection and averaging would impose a memory requ
ment per PE in excess of hardware capacities.

In our scalability studies, we exploit existing analogi
between the time evolution of the STH and kinetic rough
ing in nonequilibrium surface growth; and we use selec
results of nonequilibrium surface studies@9,30,31# in analyz-
ing the stochastic behavior of the system under consi
ation. The conservative short-range communication sch
between the system components can be regarded as an
tive short-range interaction among PEs and treated in a s
lar manner to an interaction among sites of any nonequ
rium surface, growing on a regular lattice. For these surfa
the lateral correlation lengthj between sites follows the
power lawj;t1/z, wherez is the dynamic exponent. For
finite system,j cannot grow beyond the system sizeL and it
is observed that for times much smaller than a crossover
t3 , t3;Lz, the surface width increases in accordance totb,
whereb is the growth exponent. For times much larger th
the crossover time, the surface width saturates and scale
La, wherea is the roughness exponent. The exponents
isfy the scaling relation:zb5a. The values of the exponent
are independent of the details of the system and of the na
of the interactions between sites. Their values can be de
mined from the corresponding stochastic growth equat
which defines the universality class. We observed that
simulated time horizon shows kinetic roughening and
typical scaling behavior@24#:

^wL
2~ t !&;t2b for t!t3 , ~6!

^wL
2~ t !&;L2a for t@t3 . ~7!

It was demonstrated in Ref.@23# that in the case of one sit
per PE~i.e., NV51) the time evolution of the STH in the
short-range connection model~1! follows the KPZ equation
~2! and direct simulations confirmed that the scaling ex
nents in Eqs.~6! and~7! have values consistent with the KP
universality class (a51/2 andb51/3).

A. Steady-state scaling for utilization

As the time index advances the utilization falls from
initial maximal value att50. Figure 2 presents the tim
evolution of the utilization for various system sizes in t
basic PDES with short-range connections with the infiniteD
window. For each of the system size, the utilization attain
steady state, characterized by a nonzero value in the infi
t limit. This qualitative result is also true for the simulation
in two and three dimensions, when an individual PE is
lowed to connect with four and six immediate neighbo
respectively@25#. Such a nonzero steady-state value is ch
acteristic for the KPZ universality class and can be expres
by the Krug and Meakin@32# relation for generic KPZ-like
processes:
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t→`

^uL~ t !&'^u`&1
const

L2(12a)
, ~8!

where ^u`& denotes the utilization in the infiniteL limit.
Toroczkai et al. @33# showed that the basic conservativ
PDES with one site per PE satisfies relation~8!, and they
used it to extrapolate their utilization data to largeL. Their
value for the utilization in the infinite PE limit iŝu`&
524.6461(7)% @23,24#. This finding demonstrates that th
simulation part of the algorithm is scalable in the case of
one-dimensional~1D! conservative PDES with the minima
number of volume elements per PE. Explicitly, this mea
that even in the worst case scenario, it is possible to
simulations arbitrarily long with a nonzero average rate
progress. In the case of two-dimensional~2D! and three-
dimensional ~3D! PDES, the roughness exponents area
50.220.4 ~in 2D! and a50.0820.3 ~in 3D! @25#, and the
NV51 steady-state utilization can be estimated as^u`&
>12% and^u`&>7.5%, respectively@25#.

B. The evolution of the simulated time horizon

The unconstrained PDES are characterized by an infi
roughening of the STH surface in the limit of infinite syste
size. Figure 3 presents a typical time evolution of a surfa
generated by this basic update scheme forNV51 and L
5100. As the time index advances, the surface grows
the statistical spread of its interface increases in accorda
with Eqs.~6! and ~7!. Figure 4 shows the time evolution o
the surface width for a few selected system sizes. For a fi
system size the width follows relations~6! and~7!: after the
initial growth phase, the surface saturates and its wi
reaches the plateau value. By comparing the widths forNV
51 @Fig. 4~a!# to those forNV510 @Fig. 4~b!#, one can see
that for a fixedL number of PEs, increasing the number
sites per PE shifts the crossover timet3 to later values and

FIG. 2. Unconstrained PDES: Time evolution of the mean ut
zation ^u(t)& ~averaged overN51024 independent random trials!
for various system sizes;L510 and 104 andNV51, 10, and 100.
3-4



e

iv

r
i

fo
m

s
tie
il a

col-
ll
i-
on

hat
po-
ele-
ent
ive
ap-
on-
se

ake
um-

in
of

-
.

e
pti-
tive

to
u-
sed

that
if its

ntil

ri-
a

ALGORITHMIC SCALABILITY IN GLOBALLY . . . PHYSICAL REVIEW E 67, 046703 ~2003!
increases the value of the width at the plateau. This is
pected since a larger value ofNV yields a larger cumulative
value for the local time increment between two success
communications with neighboring PEs. In the case ofNV
51, the width of the STH approaches a finite constant fo
finite L number of PEs; however, this constant diverges
the infiniteL limit in the power law fashion:

^w2&;L2a, ~9!

which gives the linear divergence of the surface variance
the KPZ universality class. The same holds for the extre
fluctuations above and below the mean simulated time@23#.
This finding is also valid in the case when each PE carrie
block of sites. The above scaling behavior creates difficul
when intermittent data on each PE have to be stored unt

FIG. 3. Unconstrained PDES: Time evolution of the time ho
zon forL5100 PEs andNV51 sites per PE. The lower surface is
snapshot att52, the upper surface is a snapshot att5100. ForL
5100 the crossover time ist3'3700.
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PEs reach the simulated time instant at which statistics
lection is performed~e.g., a simple averaging over the fu
physical application!. The diverging spread of the time hor
zon implies a diverging storage need for this purpose
every PE. Thus, the diverging width of the STH means t
the memory requirement per processing element, for tem
rary data storage, diverges as the number of processing
ments gets arbitrarily large. Therefore, the measurem
phase of an algorithm that follows the basic conservat
update scheme is asymptotically not scalable. In actual
plications, the programmer must seek some means of c
straining the infinite roughening of the STH or must impo
some global synchronization on the system of PEs.

Our and Lubachevsky’s earlier studies show that to m
the conservative scheme efficient, one must use a large n
ber of volume elementsNV . It is expected that an increase
NV will modify the growth phase of the STH. In the case
largeNV , the initial growth phase~for 0,t,t1) should be
characterized byb51/2, typical for the RD universality
class. Then, after the first crossover timet1 ~for t1,t,t2,
where t2 is the saturation time! the growth should be char
acterized byb51/3, typical for the KPZ universality class
In this way, making the simulation phase more efficient~by
increasingNV) will speed up the initial growth. Thus, th
state savings, which are traditionally associated with o
mistic schemes, are disadvantageous in conserva
schemes.

IV. CONSERVATIVE PDES WITH THE MOVING
WINDOW CONSTRAINT

A standard way of controlling the growth of the STH is
impose a constraint on its width in the spirit of parallel sim
lations of asynchronous cellular automata that was propo
by Lubachevsky@6,7#. A straightforward application of this
idea is theD-constrained update scheme which demands
at each update attempt a PE can perform an update only
value oftk is within the window. The effect of condition~3!
is that fast PEs are forced to postpone their updates u
hed

FIG. 4. Unconstrained PDES: Time evolution of the mean surface width^w(t)& of the STH~averaged overN51024 independent random

trials! for various numberL of PEs, in simulations with~a! NV51 site per PE;~b! NV510 sites per PE. Since the plateau has been reac
for L510 andL5100, the timest larger than 104 are not shown. ForL5104, the plateau is reached fort larger than 106.
3-5
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KOLAKOWSKA, NOVOTNY, AND KORNISS PHYSICAL REVIEW E67, 046703 ~2003!
slower PEs catch up. In the simplified version studied he
the assigned distance apart is measured in terms of the
cessor local time that is compared to the global minim
virtual time. Since at eacht the global minimum of the STH
changes its location, so does the window for the update
this sense a moving window constraint can be considere
an implicit rule that induces global synchronization, in whi
each PE connects with the slowest PE. From the implem
tation point of view, the most important questions are
scalability issues for realistic systems, where each PE m
carry an arbitrary number of sites, because mainly these
sues will determine the efficiency of the algorithm in actu
applications.

A. Simulation phase

In the D-constrained PDES, simulations reach a stea
state for an arbitrary system size in a similar fashion as in
basic short-range connection model, illustrated in Fig. 2
general, for anyD value, whenL is fixed the steady-stat
value of the utilization gets larger asNV gets larger; and,
whenNV is fixed it gets smaller asL is increased. This be
havior reflects the strength of the correlations between
which arise due to the update rule~1!. Namely, for fixedL,
the frequency of an update per PE increases asNV increases
because condition~1! does not need to be verified for th
internal sites and the probability of randomly choosing
border site is 1/NV . Therefore, in this case, correlations th
arise due to the short-range connections between PEs we
whenNV is increasing. In the infiniteNV limit these correla-
tions become negligible and the process of incrementing
cal simulated times resembles random deposition on the
lattice of sizeL. Thus, the RD limit is equivalent to th
infinite NV limit of PDES.

The mean steady-state utilization^uL,NV
& as a function of

the system size is presented in Fig. 5. When the numberNV
of sites per PE is increased the curves converge towards
RD limit. With a narrowD window @Fig. 5~a!# the RD limit
is approached fairly quickly~with NV5100 for D510),
while with a wide D window @Fig. 5~b!# the RD limit is
approached more slowly. For an infiniteD window the RD
limit is ^uL,`&5100%, which is the effect of no correlation
in the system in this limiting case. Obviously,^uL&51/L
3100% whenD50, because in this case only one PE
allowed to make an update. The RD curves in Fig. 5 disp
the steady-state utilization for simulations that are gover
only by the update rule~3! alone, i.e., in the absence of oth
communications between processing elements. The fall o
the RD utilization values with an increase in the number
PEs, indicates the strength of correlations between P
which exclusively results from imposing theD-window con-
straint. When all three parameters,D, L, and NV , are al-
lowed to vary in conservative PDES, the value of the ut
zation is mostly determined by the width of the movin
window. The choice of a very narrowD window severely
suppresses the average progress rate.

To determine a scaling relation for the steady-state u
zation in the infinite PE limit, we analyzed the mean stea
state utilization̂ uL& as a function of 1/L for several values
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of D and NV , in each case performing a standard ration
function interpolation@34# of the simulation data:

^uL&5

a01 (
k51

Kn

akS 1

L D k

11 (
k51

Kd

bkS 1

L D k
5

a0

11 (
k51

Kd

bkS 1

L D k

1
a1

L

11 (
k51

Kn21
ak11

a1
S 1

L D k

11 (
k51

Kd

bkS 1

L D k
, ~10!

where the polynomial degreesKn and Kd were varied to
determine the best set of the interpolation coefficients. Th
knowing the leading coefficientsa0 anda1, we extrapolated

FIG. 5. Mean steady-state utilization^u& in constrained PDES
as a function of the system size for theD-window size: ~a! D
510; ~b! D5100. L is the number of PEs. When the numberNV of
sites per PE is increased the curves converge towards the RD l
3-6
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the utilization values toL5`. In the infinite L limit the
leading term in Eq.~10! is ^u`&[a0 and we obtain the fol-
lowing scaling relation:

lim
L→`

^uL&5^u`&1
const

L
. ~11!

The mean utilization̂ u`& in the infinite L limit, as a
function ofNV and theD-window size, is presented in Fig. 6
Data points forNV5108 represent extrapolated values for t
D-constrained RD simulations. It can be observed that in
infinite L limit, as well as at each update attempt and in
saturation limit, the utilization is strongly affected by th
value ofD. A narrowD window can significantly slow down
the system because a significant number of PEs~that other-
wise would perform an update! may be constrained to wa
for the slowest ones to catch up. This effect is particula
noticeable when the numberNV of sites per PE become
large. For example, forNV5100, when theD window is
narrowed toD51, the utilization may drop by as much a
65% from its value atD5100. WhenD50, ^u`&50 for
any NV>1.

The standard % error in our simulation data for the ut
zation at eacht step does not exceed 1% when configu
tional averages are extracted fromN51024 independent ran
dom trials, except for the data obtained with the infin
window, which are within a 2% error bar~due to a smaller
N). We estimate that our values for the steady-state util
tion in the infinite L limit are well within a 2% relative
uncertainty. The utilization data that are presented in Fig
can be fitted to the approximate formula,

u~NV ,D!5uRD~D!uKPZ~NV!p(D,NV), ~12!

where the first factor approximates the utilization curve
the RD limit, uRD(D)5 lim

NV→`
u(NV ,D). The base in the

second factor approximates the utilization curve in the in

FIG. 6. Mean utilization̂ u`& in the limit of L→` as a function
of the number of volume elementsNV and theD-window size. Data
points for NV5108 present the constrained RD simulations. Sy
bols represent the simulation data. The lines are guides for the e
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nite D limit, uKPZ(NV)5 lim
D→`

u(NV ,D). Justification and

the details of the fit~12! are outlined in the Appendix. Here
u(NV ,D) denotes an approximate value of^uNV ,D&.

A mean-field-type argument can also be used to derive
approximate formula foruKPZ(NV),

1

uKPZ~NV!
215S d2

2

NV
D pw , ~13!

whered depends onNV and is the average number of steps
PE waits given that it has to inquire about the virtual time
its neighboring PEs, when the simulations reach the ste
state in the system of the infinite number of PEs. Equat
~13! is valid for NV>3, where the mean-field approximatio
of replacing the average of a function with the function
the averages has been used. In justification for Eq.~13!, we
assume that a neighboring PE has a virtual time which l
behind that of the checking PE, hence requiring the check
PE to wait. Let the total number of times on average a
advances bentot5nOK1nw , wherenOK is the number of
times it does not have to wait andnw is the number of times
it has to wait for its neighboring PE. Then, in a mean-fie
spirit: uKPZ(NV)5ntot /(nOK1dnw)51/(pOK1dpw), where
pOK5nOK /ntot and pw5nw /ntot . Probability pOK is the
probability of not having to wait when either an interior si
or a border site is chosen:pOK5(NV22)/NV1(12pw)
3(2/NV), wherepw is the probability of waiting when either
of the border sites is chosen. CombininguKPZ andpOK gives
Eq. ~13!.

Similar arguments can be used to derive an approxim
formula in the limit of largeD:

1

u~D,NV!
215S d2

2

NV
D pw1S k211

2

NV
pwD pD ,

~14!

where k depends on bothNV and D, and is the average
number of steps a PE waits given that it does not have
wait for a neighboring PE but has to wait because of
D-window constraint. The meaning ofd andpw is as in Eq.
~13!. Let nw be the number of times the PE waits given th
a border site has been chosen, andnD be the number of times
a PE waits because theD condition has been not satisfie
either at the border or at the interior site. The correspond
probability pD is the probability of waiting because theD
condition is not satisfied. In justification for Eq.~14! we
assume that in the limit of largeD, the events of violating
the window condition at the border are almost disjoint fro
the events of violating the nearest-neighbor update condit
With this assumption, no matter which is done, one cy
will be used to update the configuration, so the total num
of updates isntot5nOK1nw1nD , while the number of
cycles taken on average isnOK1dnw1knD . Defining the
probabilities as above, yields the approximate relation~14!.
Additional approximations can be made by assuming u
formly distributed waiting times. Note that for fixedNV and

-
es.
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D, both d andk can be measured independently of the u
lization, thereby testing the mean-field spirit of the calcu
tion.

B. Measurement phase

Direct simulations show that theD-constrained width of
the STH is bounded: its absolute spread remains within thD
value for an arbitrary system size. This result should be
pected since the update rule~3! implies that independently o
the system size, at each update attempt, the absolute d
tion from the minimum cannot take on values much larg
thanD ~if it does, the update does not happen!. Thus,wa as
well as w may not exceedD. The surface of the STH is
effectively smoothed at each update attempt. Figure 7 sh
the difference in roughening for two surfaces aftert51000
steps: the upper surface is obtained in simulations with
the D constraint, while the lower surface is obtained w
D55.

TheD-constrained time surfaces exhibit the initial grow
and the saturation at later times, similar to Fig. 4. Howev

FIG. 7. The roughening of the STH. ForD5` ~the upper sur-
face!, the crossover time ist3'4000, and forD55 ~the lower
surface! the width begins to saturate attp'40.
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a detailed analysis of the time evolution of the surface wi
suggests that, in general, they do not belong to the K
universality class unlike surfaces generated withD5`. Fig-
ure 8 presents a typical behavior of the width forD510. In
general, the transition to the saturated state takes place o
time interval~a ‘‘bump’’ in Fig. 8!, whose length and posi
tion depends mainly on theD value and cannot be characte
ized by a single crossover time. In the initial growth pha
for t!tp (tp marks the beginning of the plateau, Fig. 8!, the
surface width scales astb, i.e., for a fixedD and NV , the
growth is characterized by one value of exponentb for any
L. In general, surfaces generated with various values of
rametersD and NV are characterized by various effectiv
values of the growth exponentb. WhenD5`, b values are
between the KPZ value of 1/3~for NV51) and the RD value
of 1/2 ~for NV5`) for small and intermediateNV andL. In
the saturated phase,tp!t, for a fixed value ofD, the surface
width ^wL,NV

(t)& decreases with the system size, as can
observed from Fig. 8. The saturated surface width as a fu
tion of the system size is plotted forD5100, 10, 5, 1 in Fig.
9. It can be seen that increasing the number of PEs and
number of sites per PE does not result in infinite roughen
of the STH.

The STH produced in the RD simulations with the infini
D window ~in other words, in PDES with no communicatio
between PEs! is characterized by a surface that is not se
affine @9#. Nonetheless, the presence of a finiteD-window
constraint in the RD simulations forces the STH surface
saturate~Fig. 8!. Therefore, this type of PDES no longe
belongs to the RD universality class, characterized byb
50.5 and a5`. In the D-constrained PDES, the
D-constrained RD surface is the limiting case when the nu
ber of sites per PE grows to infinity.

An interesting feature in the surface width evolutio
graphs~Figs. 8 and 10! is the presence of a maximum th
marks the end of the growth phase. Its double peak struc
can be explained, both quantitatively and qualitatively,
terms of simplex geometry@35#. In the set ofL processing
elements, we distinguish between slow PEs@group (S)] and
fast PEs@group (F)]. At the tth update attempt, thekth pro-
FIG. 8. The time evolution of the mean STH surface width^w(t)& ~averaged overN51024 independent random trials! in PDES with
D510, for ~a! L5100 and~b! L51000. The curves are plotted for severalNV . Plots of^wa(t)& look exactly the same.
3-8
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FIG. 9. PDES with theD-window constraint: The steady-state surface width^w& of the STH as a function of the system size.~a! D
5100; ~b! D510; ~c! D55; and~d! D51. The curves are plotted for several values of volume elementsNV . The lines are guides for the
eyes.
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cessor belongs to group~S! if its local timetk(t) is less then
or equal to the mean local time over all processors at tht
step. Otherwise, it belongs to group (F). One can define the
variancew2 and the widthwa for each group as follows:

w(X)
2 ~ t !5

1

L (X)~ t ! (
k51

L(X)(t)

@tk(X)~ t !2 t̄~ t !#2, ~15!

wa(X)~ t !5
1

L (X)~ t ! (
k51

L(X)(t)

utk(X)~ t !2 t̄~ t !u, ~16!

where ‘‘X’’ stands for either ‘‘S’’ or ‘‘ F, ’’ and L5L (S)(t)
1L (F)(t). The variancew2 and widthwa of the STH can be
expressed as the convex linear combinations,

w2~ t !5 f (S)~ t !w(S)
2 ~ t !1 f (F)~ t !w(F)

2 ~ t !, ~17!

wa~ t !5 f (S)~ t !wa(S)~ t !1 f (F)~ t !wa(F)~ t !, ~18!

where 15 f (S)(t)1 f (F)(t), 0< f (S) , f (F)<1. Explicitly, w2

and wa form a 1D simplex with vertices atS and F. The
coefficientsf (S) and f (F) are the fractions of slow and fas
processors, respectively, in the system at each update att
t. Figure 10 shows the time evolution of the surface wid
04670
pt
s

wa(S) , wa(F) andwa @Fig. 10~a!# and the corresponding frac
tional contributionsf (S) and f (F) @Fig. 10~b!# for the first 500
simulation steps. Quantitatively, the double peak inwa(t) ~at
aboutt510) presents the weighted sum ofwa(S) andwa(F)
in accordance with Eq.~18!, which is evident by matching
the width contributions@Fig. 10~a!# with the corresponding
fractional contributions@Fig. 10~b!# at eacht step. Qualita-
tively, the decrease in surface widths fort.10 is the effect
of the constraint condition~3!. In the particular case of simu
lations with D510 and NV51000, illustrated in Fig. 10,
initially the majority of PEs belongs to the slow group@about
63% att51, Fig. 10~b!#; but ast advances the STH rough
ens and the population of the slow group falls while t
population in the fast group grows. As the population of t
fast group gets larger, the fractionu of PEs that are allowed
to update falls because some of the fast PEs violate cond
~3!. While the fast PEs are waiting~i.e., no local time incre-
ments at the fast sites!, the slow PEs are incrementing the
local times, hence, the mean simulated time increases
therefore the deviation from the mean in Eq.~16! @and Eq.
~15!# decreases for the fast PEs. This is the main mechan
in the formation of the maximum in thewa(F) curve. Simi-
larly, the first maximum in thewa(S) curve is formed mainly
due to the depopulation of the slow group. As the slow P
3-9
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KOLAKOWSKA, NOVOTNY, AND KORNISS PHYSICAL REVIEW E67, 046703 ~2003!
are ‘‘catching up’’ with the fast PEs within theD window for
the update, the utilizationu increases@20,t,50, Fig. 10~b!#
and so do the widths. This secondary maximum is less p
nounced because the populations of the two groups are c
apart. Eventually, after several cycles, the widths as wel
the utilization reach steady values.

In other words, the way in which the system undergo
the transition from the initial state to the steady state,
served in the above example, is a direct consequence o
window constrained update scheme~3! and the particular
initial condition, in which all PEs enter simulation with the
local times equal. If this initial condition of the full synchro
nization is changed, for example, by assuming that att50
the local times are randomly distributed about some m
local time, the transition to the steady state will change
character. On the other hand, if at some later update atte
ts the system is synchronized~which is equivalent to setting
all local simulated times to one value atts) then the recurren

FIG. 10. PDES withD510, NV5103, and L5104: ~a! time
evolution of the surface widths;~b! time evolution of percent-
fractional contributions to the surface widths. Subscripts~S! and~F!
denote a fraction of processors in the slow and in the fast gro
respectively, andu is the utilization. Configurational averages we
taken overN51024 independent random trials. The lines are gui
for the eyes.
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time evolution will be repeated afterts until the steady state
is attained.

The above arguments can be restated in terms of the S
variancew2 @taking Eq.~17! as the key to the analysis# for
any system size. In the conservative PDES with a mov
window constraint the system evolution towards a stea
state follows essentially one path, along the above outl
for any value of the simulation parametersD, NV , andL. In
our example, we choose tentatively a very narrowD window
and a largeNV so the effect of the update scheme~3! is
clearly pronounced in the evolution curves. In such a syst
the correlations that arise due to the short-range connec
update scheme~1! are small relative to the correlations th
arise due to the window constraint~3!. Accordingly, in this
case one can clearly deduce that a sharp fall in the utiliza
curve is the effect of a sharp population rise in the group
fast PEs. For example, one can read from Fig. 10~b! that at
t510 about 25% of the PEs that did not make an upd
were mostly in the group of fast PEs, so approximately ab
one half of the fast PEs updated at this update attemp
similar conclusion is certainly false when each PE in t
system carries a small number of sites~e.g.,NV510) since
in this case the correlations that originate due to the sh
range connections between PEs may not be neglected an
utilization curve begins the fall att50 because the fast PE
and the slow PEs fail to satisfy condition~1! with approxi-
mately equal frequency. Opening theD-window wide ~e.g.,
D5100) effects the evolution curves in two ways. First,
slows down the buildup of the correlations that arise due
constraint~3!. This makes the growth phase longer, so tha
transition to the steady state takes place at later times
over extended time intervals. Second, it softens the corr
tions that arise due to constraint~3!, which smooths a tran-
sition to the steady state and the ripplelike features in
utilization and the width curves~that are clear in Fig. 10! are
only weakly present or vanish into statistical uncertainti
For example, in the worst case scenario ofNV51 and D
5100, the time evolution towards the steady state follo
the pattern typical for the KPZ universality class (D5`),
which suggests that the main correlation mechanism res
from the update scheme~1! in this case. Nonetheless, unlik
the KPZ surfaces, the presence of theD window prohibits
the steady-state surface width to grow infinitely as the s
tem gets larger.

V. DISCUSSION

Our statistical analysis of the growing virtual time inte
face in conservative asynchronous PDES with a moving w
dow constraint, shows that in the steady state the ave
utilization remains finite~and nonzero! and scales with the
system size. Similarly, the statistical spread of the STH
mains finite and scales with the system size. This was d
onstrated for a range of volume elements fromNV51 to the
RD limit at NV5`. The convergence of the utilization to
finite value and the convergence of the time interface wi
to a finite value as the number of processing elements
nitely increases, reflects positively on the ability to ef
ciently implement this type of PDES in applications. In oth
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words, with this globalD-window constraint the simulation
part as well as the measurement part of the algorithm
simultaneously scalable.

The practical questions that should be addressed inv
suitable implementations of the algorithm, possible mod
cations and generalizations that would facilitate applicati
by optimizing performance and thus maximizing efficienc
Such questions would likely be nonuniversal, and hence
pend on the explicit problem being simulated.

It follows from our analysis that the utilization as define
by a fraction of working processors, is not a sole measur
the efficiency. However, it is an important component of t
efficiency. The case of PDES with the basic conserva
scheme, when the measurement phase is not scalable,
gests other important factors that should be considere
efficiency studies. The second important component is
statistical spread of the virtual time surface as it is measu
by its variance or by its mean absolute deviation. The th
important element is the frequency and the effect of extre
fluctuations in the virtual time interface. The fourth impo
tant factor is the average progress rate, which could be m
sured by the growth rate of the global minimum of the virtu
time interface. An efficient algorithm should be characteriz
by the highest values of the utilization and the progress r
while having small statistical spread in waiting times a
should lack severe effects of the extreme time fluctuation

Applying the above recipe to conservative asynchron
PDES with aD-window constraint, the results of our studie
indicate that this kind of simulation presents a promise
becoming a good departure point towards the design o
efficient class of algorithms for asynchronous systems.
D-window constraint not only eliminates the extreme flu
tuations in the virtual time horizon but also controls the s
tistical spread of the STH and controls the average prog
rate. The width of theD window can serve as a tuning pa
rameter that, for a given volume load per processor, could
adjusted to optimize the utilization so as to maximize
efficiency.

In the conservative asynchronous PDES studied in
work, there is no condition imposed that would explicit
synchronize a system in the course of the simulations.
system is fully synchronized only initially and undergoes d
synchronization over time~i.e., over many parallel steps!.
The degree of this desynchronization is strictly related to
roughening of the STH. As the simulations evolve, corre
tions between system components build up, which is
flected by changes in the morphology of the STH. There
two sources of correlations in the STH. The first is t
nearest-neighbor communication rule that, if acted alo
would eventually lead to the steady state, where the en
system is correlated. In the case of one volume element
PE, the time to the global correlation is of the order ofL3/2.
However, the presence of this global correlation does
cause an implicit synchronization nor does it lead to a s
of near synchronization. On the contrary, despite this co
lation there are no global bounds on the roughening of
virtual time horizon: the larger the system, the more des
chronized it becomes over time. The nearest-neighbor c
munication rule is the essence of the conservative sch
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because it ensures that causality is not violated in any upd
The second source of correlations is the constraint in
form of the moving window condition. The moving window
condition, if acted alone, would lead to the steady sta
where the entire system is not only correlated but, also
synchronized to some extent. The extent to which the sys
may become synchronized depends on the width of the m
ing window—the roughening of the virtual time horizon
constrained to theD-window width. Notice, the moving win-
dow condition is not necessary for the conservative sche
Its role is to ensure that infinitely large desynchronizati
will not happen. In this sense, the constraint condition can
seen as an implicit synchronization protocol. In the co
strained conservative PDES, the above two correlat
mechanisms act together: the nearest-neighbor conne
rule explicitly guarantees causality and the constraint r
implicitly guarantees a near synchronization in an arbitra
long sequence of update attempts.

VI. SUMMARY AND OUTLOOK

We considered the conservative parallel discrete ev
simulations with the moving window constraint and studi
the time evolution of the utilization as well as the time ev
lution of the stochastic time horizon by varying the syste
size~i.e., the numberL of processing elements and the num
ber NV of sites per processing element! and by varying the
width of the moving window. The results of our simulation
indicate that this particular class of algorithms with the co
servative update scheme generally scales with the sys
size. The utilization reaches a steady-state value after a fi
number of simultaneously performed parallel steps and
proaches a finite nonzero value in the limit of infinite syste
size. This demonstrates that the simulation part of the a
rithm is scalable. The statistical spread of the stochastic t
horizon is bounded by the size of the moving window co
straint in the limit of the infinite system size, which show
that the measurement part of the algorithm is scalable
particular, in the limit of a large number of sites per proce
ing element the results of the simulations approach the c
strained random deposition model, which is characterized
a high value of utilization while permitting effective dat
management. The simultaneous scalability of both phase
the algorithm is an important finding because it establishe
solid ground for the design of new class of efficient alg
rithms for parallel processing to model the evolution of sp
tially extended interacting systems with asynchronous
namics. Further studies are required in the search for poss
optimal implementations. For example, explicitly taking in
account the time required to find the global minimum of t
STH at each step.

Aside from practical aspects of the constrained para
conservative discrete event simulations that are oriente
direct applications such as the scalability issues, there
several interesting physics questions that arise in connec
with the stochastic time surface growth. These include
development of the lateral correlations and transient re
ation processes. We leave these questions open to pos
future investigations.
3-11
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APPENDIX: THE UTILIZATION DATA

In the infinite L limit the utilization is a two paramete
family of curves~Fig. 6!. The two limiting curvesuRD(D)
and uKPZ(NV) approachu51 in the infinite limit of their
arguments. One can consider eitheruRD or uKPZ as an inde-
pendent variablex and express the utilization asy5y(x).
We choose parametrization byNV , where x5x(NV)
5uKPZ(NV) and yD(x)5yD„x(NV)…. Figure 11 illustrates
the idea by plotting the utilizationyD(x) for several values of
D. The curves in Fig. 11 are a family of roots that, in fir
approximation, could be expressed byyD(x)5a(D)xp(D),
wherea(D) and p(D) have fractional values. To finda(D)
and p(D) each curve is fitted to ‘‘the best’’ two-point for
mula. Then, sequencesa(D) and p(D) are expressed by fi
functions.

A fit to a(D) is chosen in such a way thata(0)50 and
a(`)51. In Fig. 11,a(0)50 corresponds toy(x)50 be-
causeD50 yieldsu[0 for L5`. Conditiona(`)51 cor-

FIG. 11. Family of utilization curvesyD(x) vs x5uKPZ(NV),
illustrating the underlying idea of the fit. ForD1,D2,•••,D
5`, yD1

,yD2
,•••,y`5x. For D50, yD(x)50 ~not shown!.

Symbols mark the simulation data. The cubic spline curves
guides for the eyes.
04670
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responds toy(x)5x becauseD5` meansy5uKPZ . Con-
sidering the limit behavior ofyD(x), whenx(NV5`)51 the
coefficienta(D) must be interpreted asuRD(D). This is also
consistent with the alternative parametrization, wherex
5uRD(D). Therefore, we directly identifya(D) with the ap-
proximate expression foruRD(D). A four-point fit can be
found as

uRD~D!'a~D!>
1

11
c3

De3
2

c4

De4

. ~A1!

Whenc3515.8, e351.07, c4512.3, ande451.18, fit ~A1!
is good within62% relative error in the range 0<D,`. A
simple two-point fit with c353.47, e350.84, andc45e4
50 approximates our simulated data within62.5% relative
difference~Fig. 6, utilization values forNV5108).

Considering the limitsuKPZ(NV51)'1/4 anduKPZ(NV
5`)51, a four-point fit tox(NV) is

uKPZ~NV!5x~NV!>
1

11
c1

NV
e1

1
c2

NV
e2

. ~A2!

Whenc152.3, e150.96, c250.74, ande250.4, fit ~A2! is
good to within 62% relative error in the range 1<NV
,`. A simple two-point fit withc153.0, e150.715, and
c25e250 approximates our simulated data within62.5%
relative difference~Fig. 6, utilization values forD5`).

In fitting the powerp(D), the limits arep(D5`)51 and
p(0)50. In Fig. 11, conditionp(D5`)51 meansy(x)
5x. Conditionp(0)50 expresses the fact that for smallD
the utilization depends mainly onD ~not NV) and, therefore,
the exponentp(D) should be almost zero for smallD. A
simple two-point formula givesp(D)51/(112/D3/4). With
this p(D), a simple fit tou(NV ,D)'a(D)x(NV)p(D) has a
610% relative error whena(D) and x(NV) are given by
simple two-point fits. The actual powerp depends weakly
also onNV , p5p(D,NV). A four-point formula that accom-
modates theNV dependence can be expressed as

p~D,NV!'
1

11
c5~NV!

De5(NV)
2

c6~NV!

De6(NV)

. ~A3!

The fit ~12! is good to within65% relative uncertainty for
all D and NV values whenuRD and uKPZ are expressed by
four-point fits ~A1! and ~A2!, respectively, and whenp is
given by Eq.~A3! with the following fit parameters: forNV
>100, c55528.4, e551.487, c65515.1, e651.609; for
NV,10, c5517.43,e551.406,c6515.3, e651.687; other-
wise,c555.345,e550.627,c650.095,e650.045.
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